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NOTICES

Disclaimers

The findings in this report are not to be construed as an of-
ficial Department of the Army position, unless so designated
by other authorized documents.

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government in-
dorsement or approval of commercial products or services
referenced herein.

Disposition

Destory this report when it is no longer needed. Do not
return it to the originator.
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INTRODUCTION

The primary purpose of the experiment on short-time mass variation in
natural atmospheric dust was to remotely measure winds in the atmosphere;
however, this report covers a facet of the effort relating measured back-
scatter to relative mass loading changes in the atmosphere. This rela-
tionship was made by observing the motion of dust irregularities through
two well-defined scattering volumes of a lidar. The lidar is a laser
radar device which projects a light beam into the atmosphere and, with
an optical receiver, collects and monitors the backscattered light. In
a short time period, the change in backscatter can be related to the
change in the mass loading of dust, under the assumption that the form
of particle size distribution is time-invariant. The dust in the atmo-
sphere affects a number of atmospheric processes. The heat balance of
the atmosphere is noticeably affected by the dust. Dust can be active
in gas-particle reactions or as a catalyst. Certain types of natural
dust can react with man-made pollutants; for example, calcite will
readily react with sulfuric acid fumes. Dust particles can act as con-
densation nuclei in the growth of haze, fog, or cloud particles. A
knowledge of the mass distribution of the natural dust is useful in other
studies of chemical and physical processes in the atmosphere. By taking
the backscatter information from one beam of the lidar, the author ex-
amined the short-term (1 to 10 seconds) mass variation of natural dust
in the atmosphere. The relative mass fluctuations and horizontal physi-
cal sizes of the dust irregularities were estimated. These dust varia-
tions were measured on the evening of 4 December 1977 at White Sands
Missile Range (WSMR), New Mexico, at a position 15 meters above the ground.

A mathematical development relating backscatter and mass concentration in
a relatively clean atmosphere is presented. The backscatter from a known
volume of the atmosphere was measured relative to time. The wind was
measured simultaneously near the backscatter volume for the purpose of
inferring horizontal dimensions and wind shear at the edge of the ir-
regularities.

BACKGROUND

Researchers have been interested in the dust in the atmosphere for many
years. When the Krakatoa volcano in the South Pacific erupted in 1883,
ejecting tons of dust into the high atmosphere, people from many parts
of the earth could observe the effects of the scattered light after dusk.
By noting the first time this colorful effect could be seen in each of
several places, researchers estimated dust motion. This occurrence was
one of the early qualitative observations of dust motion in the atmo-
sphere.1 More recently, investigators have probed the atmosphere both
horizontally and vertically with an airborne laser radar to examine large-
scale horizontal layering.' Using a laser radar system, Collis was able

'"Krakatoa," Encyclopedia Britannica, 1959, 13:498-499
2F. G. Fernald and B. G. Shuster, 1977, "Wintertime 1973 Airborne Lidar
Measurements of Stratospheric Aerosols," J Geophys Res, 82:3
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A
to observe airflow and diffusion rates of artificially produced aerosol
clouds in a mountain valley.3 This permitted a more thorough knowledge
of micrometeorological conditions in the valley. Derr and Little, 4

using a bistatic two-beam lidar system, examined the backscatter from
clear atmosphere and found a substantial degree of correlation between
two specific scattering volumes. Within the past 3 years, scanning
laser radars5 have been used to examine the horizontal and vertical
motion of large-scale backscatter variations in the atmosphere. Lidar
measurements have been made to a height of more than 1000 meters, and
horizontal ranges of up to 10 kilometers.

In many years of taking lidar data, Murray* has observed that relatively
sharp irregularities in the backscattered return occur almost all of the
time. From this observation, it can be inferred that dust irregularities
in the atmosphere are quite common.

THEORY

Four of the pioneers in the basic theory development of light scattering
from particles in a medium were Clebsch, 1863;

G Rayleigh, 1R71; 7

3Ronald T. H. Collis, 1968, "Lidar Observations of Atmospheric Motion
in Forest Valleys," Bull Am Meteorol Soc, 49:918

4V. E. Derr and C. G. Little, 1970, "A Comparison of Remote Sensing of
the Clear Atmosphere by Optical, Radio and Acoustic Radar Techniques,"
Appl Opt, 9(9):1976-1985

5T. G. Leuthner and E. W. Eloranta, 1977, "Remote Measurements of
Longitudinal and Crosspath Wind Velocities with a Monostatic Lidar,"
paper presented at the Eighth International Laser Radar Conference at
Drexel University, Philadelphia, PA, June 1977

*E. R. Murray, personal communications, March 1979, Stanford Research
Institute, Menlo Park, CA
6A. Clebsch, 1863, J Fur Math, 61:195

7Lord Rayleigh, 1912, The Scientific Papers of Lord Rayleigh, 1 and 4,
Cambridge University Press, NY
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Mie, 1908;8 and Debye, 1909. 9 A rather thorough history of the early
workers in light scattering has been compiled by Kerker.10 Today, the
theory of single scattering from a spherical homogeneous particle carries
the name Mie theory.

The natural dust is a mixture of minerals, a few of which are calcite,
dolomite, kaolinite, montmorollinite, quartz, gypsum, and thenardite.

11

However, at the present stage of development of the lidar method, one
must assume that the dust consists of homogeneous spheres all with the
same refractive index.

Three specific approximations are made to meaningfully interpret lidar
results. These approximations concern the refractive index, m, the par-
ticle size distribution, and particle shapes.

The refractive index, m = n - ik, where n is the real portion ordinarily
measured on refractometers, is important in backscattering computations.
(All terms used are explained in the definition of symbols at the end of
the report.) Values of n in the visible lighL region are specific to
given minerals 12 and vary according to wavelength. An extended discussion
of the relation between the average m and extinction of light is given
by Toon et a11 3 who examine the error on extinction related to the aver-
age m when minor components of the dust deviate markedly from this aver-
age. A reasonable average value for n for dust of the type observed at

8G. Mie, 1908, "Beitrag zur optik truber medien, speziell kolloidaler
metallosungen," Ann Phys, 25:377-445

9P. Debye, 1909, "Das verhalten von lichtwellen in der nahe eines
brennpunktes oder einer brennlinie," Ann Phys, 30:755-776

10M. Kerker, 1969, The Scattering of Light and Other Electro-Magnetic
Radiation, Academic Press, NY

11G. B. Hoidale, S. M. Smith, A. J. Blanco, and T. L. Barber, 1967, "A
Study of Atmospheric Dust," ECOM Report 5067, Atmospheric Sciences
Laboratory, White Sands Missile Range, NM

12Esper S. Larsen and Harry Berman, 1934, "The Microscopic Determination
of the Nonopaque Minerals," Bulletin 848, US Department of the Interior,
Geological Survey

130wen B. Toon, James B. Pollack, and Carl Sagan, 1977, "Physical Proper-
ties of the Particles Composing the Martian Dust Storm of 1971-1972,"
Icarus, 30:663-698

- 1



WSMR is 1.52.14 The value of k in the visible light spectral region is
small compared to n and is related directly to the Beer's law absorption
of the materia'. providing particles are small compared to the wave-
length. 15 The average value of k in the visible region which has been
measured for specific dust types at WSMR is approximately 0.01.6 A
knowledge of m is important since particulate backscatter is a sensitive
function of this parameter.

The second problem is that which arises with changes in size distribu-
tion that occur in the natural atmosphere with various changes in meteo-
rological conditions. Since the data presented in this research work
cover only a few minutes of time, these changes in size distribution are
orobably not a major problem. For interpreting the lidar results, the
size distribution is assumed to be constant during this period.

The third area of approximation is in the particle shape. The Mie theory
pertains to homogeneous spheres; the problem of irregularly shaped dust
particles causes a difference relative to exact Mie theory. Ch~lek et
all 7 have examined the problem of irregular shape relative to perfect
spheres. The difference between backscatter from irregular dust parti-
cles as compared to spheres of equal cross section can be as much as a
factor of 2 to 5. This is simply a difference between scatter from ir-
regular particles and spheres. Slightly irregular dust particles with
equivalent size parameter X(X = 2rr/x) of 3 or less can be closely approx-
imated by the Mie theory for scattering as found by Pinnick et al. 18

The backscatter cross section B180 is a function of size parameter X, the

size distribution f(r), the index of refraction m, and the total number
of particles in the scattering volume N0. As previously mentioned, the

size distribution of dust can change radically with a change in meteoro-
logical conditions. Over a few hours of time, for example 24 hours, this
assumption of the constancy of f(r), the size distribution, would be

14G. W. Grams, I. H. Blifford, Jr., D. A. Gillette, and P. B. Russell,
1974, "Complex Index of Refraction of Airborne Soil Particles," J AppI
Meteorol, 13:459-471

15S. G. Jennings, R. G. Pinnick, and J. B. Gillespie, 1979, "Relation
Between Absorption Coefficients and Imaginary Index of Atmospheric
Aerosol Constituents," Appl Opt, 18(9):1368-1371

16James D. Lindberg and James B. Gillespie, 1977, "Relationship Between
Particle Size and Imaginary Refractive Index in Atmospheric Dust," Appl
Opt, 16:2628-2630

17Peter Chylek, G. W. Grams, and R. G. Pinnick, 1976, "Light Scattering
by Irregular Randomly Oriented Particles," Science, 193:480-482
18R. G. Pinnick, D. E. Carroll, and D. J. Hofmann, 1976, "Polarized
Light Scattered from Monodisperse Randomly Oriented Non-Spherical Aerosol
Particles: Measurements," Appl Opt, 15(2):384-393
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itivalid. At the other extreme, this approximation is accepted during 1
second of time while a small volume of the atmosphere is being considered,
for example 1 cubic meter. Gillette* has examined size distribution vari-
ations in natural dust in conditions of relatively high visibility in
time periods as short as 10 seconds. He found essentially no variation
in the size distribution over several tens of seconds. For the individual
time periods of 30 seconds from figures 1 through 4, this approximation
that f(r) is constant is assumed to be reasonable under reasonably stable
meteorological conditions. The data presented in this report cover only
a few minutes of time; and over this period, wind conditions, temperature,
and atmospheric pressure conditions were essentially constant.

For the case being considered here, the differential size distribution
f(r) is a function that will produce the fraction of particles with size
r. The relation between backscattered radiation and the mass loading
can be derived by assuming that the particle size distribution f(r) will
not change appreciably during the total time period of minutes for which
data are presented.

For spherical particles,

r2

Bo180 f 4 Gnr 2 f(r)dr, (1)

where B180 is the total backscatter cross section in the volume of in-

terest, G is the ratio of the geometrical cross section of a particle
to its effective backscatter cross section, and irr2 is the cross section
of a single particle.

For a specific size distribution of material, G is a specific function.
The mass of dust is defined as

r
No r 2 

4

Nr 7 f(r)dr, (2)

r1

*D. A. Gillette, April 1979, personal communications, unpublished data,
National Center for Atmospheric Research, Boulder, CO
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Figure 1. Backscatter data, from a olume in the atmosphere 2 cm in
diameter and 4 m long.

The data presented in figure 1 were taken at the rate of 6000 samples
per second on the evening of 4 December 1977. For this graph, 50 points
were summed and divided by 50 as a new data point. Scale B is a relative
scale based on the theory section. The average, or the 1 on scale B, is
an average over 2 minutes of data. The size of these dust cells is ob-
tained by comparing the anemometer chart with this graph, obtaining an
average windspeed for a time period and therefore the size. The more
definite dust cells maximum mass loading and size are listed in table 3.
These cells are indicated by the numbers on this figure. Cross-
correlation with this and the adjacent scattering volume obtained a
correlation maximum of 0.85.
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Figure 2. Time depiction of backscatter data from a volume in the
atmosphere.

The graph continues from figure 1; parameters given in figure 1 still
apply. Zero time in this figure is the 26th second in figure 1. Cross-
correlation with this and the adjacent scattering volume obtained a cor-
relation maximum of 0.87.
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Figure 3. Time depiction of backscatter data from a volume in the
atmosphere.

The graph continues from figure 2; parameters are the same as in figure
1. Zero time in this figure is the 18th second in figure 2. Cross-
correlation with this and the adjacent scattering volume obtained a
correlation maximum of 0.94.
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Figure 4. Time depiction of backscatter data from a volume in the
atmosphere.

The graph continues from figure 3; parameters are the same as in figure
1. Zero time in this figure is the 15th second in figure 3. Cross-
correlation with this and the adjacent scattering volume obtained a
correlation maximum of 0.99.
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where M is the total mass of dust in a specific volume (mass loading)
of air, P is the average density of the dust, and the other terms are
as defined above for equation (1).

With a specific f(r),

B180 = D3M , (3)

where D3 is a proportionality factor, or3i

B 80 D (4)

D3

From equations (1) and (2),

N r2
74- f Gr2f(r)dr

B r
180 1 1 (5)
Mr

N P-rr r3f(r) dr

r
l1

Assuming the same r2 to rI limits in both numerator and denominator,

equation (5) can be simplified to

B DlB180  D 3  , (6)

where D and D2 are separate numbers which depend on the form of the dif-
ferential size distribution f(r); hence, the whole function on the rightside of equation (6) is a specific number.

p
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The effect of dust scattering losses on the laser beam and return signal
will now be considered. The quantity that is measured is not B180
directly. With a constant laser energy E, from the lidar,

B180E = S (7)

where S is the signal available at the front of the receiver for a con-
dition in which transmission losses are zero. The transmission losses
in the atmosphere are now considered. There is some small amount of
light extinction in the outgoing laser beam and in the return scattered
beam.

The extinction coefficient, a, can be obtained by the Koschmieder 19

relation, which relates visibility, V, to the extinction coefficient,

V - 3.912 (8)a

During the time the backscattering data were taken, the horizontal
visibility V was estimated to be 130 kilometers. The total transmission
T is related to the extinction coefficient by the relation

T e 2AL (9)

T is the fraction of the total light that will traverse the distance of
interest. L is the range from lidar to scattering volume or n.07 kilo-
meter. The number 2 is inserted because the laser beam goes out and the
scattered light must return to the receiver.

Using equations (8) and (9) with L = 0.07 kilometer,

T z 0.996 . (10)

This transmission is the atmospheric transmission, and it is essentially
1, so that the extinction can be neglected in the expression for the lidar
return signal.

EXPERIMENTAL

The objective of this segment of the investigation was to measure and

record the backscatter from a fixed volume in the atmosphere. The

19H. Koschmieder, 1924, "Theorie der horizontalen Sichweite," Beitr
Phys freien Atm, 12:33-53, 171-181
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general device was a lidar. The transmitter source was a copper vapor
laser, transmitting at 5106 and 5782 angstroms. About three-quarters
of the total power was produced at 5106 angstroms. The total power
averaged around 5 watts. This laser was a pulsed device, with a 20-
nanosecond-long pulse, operated at 6000 pulses per second.

Figures 5 and 6 are general diagrams of the experimental setup. This
relatively isolated spot on the White Sands Missile Range was chosen to
get away from man-made sources of dust to work with more natural condi-
tions.

The collimator and detector assembly are shown in figure 7. With the
collimator, a beam diameter of 2 centimeters was obtained at 70 meters
range, putting all of the available energy through the scattering volumes.
The director mirror permitted careful pointing of the laser beam so as
to illuminate the sample volume that the telescope saw efficiently. The
size of the sample volume in the atmosphere was 2 centimeters diameter
and 4 meters long.

The backscattered signal from the volume of interest was collected by a
75-centimeter-diameter Cassegrainian receiver telescope. The scattered
light collected by the telescope was converted to an electronic signal
by a photomultiplier. An electronic gate accepted only 27 nanoseconds
of the signal from a range of 70 meters. Light travels 8 meters in 27
nanoseconds, 4 meters forward and 4 meters backward, thus defining the
4-meter length of the sample volume.

Figure 8 is a time depiction of the operation of the gate circuit. For
a more thorough discussion of the receiver, photomultiplier system, and
the gate circuit, the reader is referred to Barber and Mason. 20

ANALYSIS AND RESULTS

With the backscattered signal received and recorded from the lidar, an
estimated relative mass loading scale for dust in the atmosphere can be
obtained. In the theory section, it was shown that the backscattered sig-
nal is proportional to the mass loading if the assumption is true that
f(r) is constant over a short period of time in a relatively small atmo-
spheric volume. Because of the assumptions made, the exact value for the
proportionality constant D3 is not known; however, a linear relative
scale can be developed.

Two specific factors are needed to relate the value of B180 to the actual

backscattered signal that is received and recorded from the lidar. These
are the laser output E and the efficiency of the receiver system, Z. As
will be shown below, both are essentially constant for the conditions of
the experiment.

OT. L. Barber and J. B. Mason, 1974, "A Transit-Time Lidar Wind
Measurement: A Feasibility Study," ECOM Report 5550, Atmospheric Sciences
Laboratory, White Sands Missile Range, NM

I-



LASER BEAMS
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Figure 5. Experimental setup. The lidar consisted of a pulsed copper
vapor laser transmitter and a 75-cm-diameter Cassegrainian
receiver telescope. Two laser beams were projected outward
and the scattering volume of interest was set to be hori-
zontally adjacent to the reference anemometer. The back-
scattered signal picked up by the receiver telescope was
converted to an electronic signal by a photomultiplier shown
on the rear of the telescope.

19
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SAMPLING & HOLI) PHOTOMULTIPiIERS

IAST SIC

1- 70 METERS

L JI WIRE

TAPETELESCOPE SCATTERING
RECORDER RECEIVER [ ,...VOLUMES

"7 WIRE "
rFAST SWIT('Ii

6 5

SAMPLING & HOLD UVW ANEMOMETER

Figure 6. A layout of the lidar measuring system.

1. The copper vapor laser transmitter

2. The two scattering volumes in the free atmosphere, 15 meters

above the ground.

3. The receiver telescope

4. The photomultiplier

5. The fast gate switch which defines the range L

6. The sample and hold network holding the average signal for 100 micro-

seconds.

7. The tape recorder
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LASER

F COLLIMATOR

DIRECTOR
MIRROR

-POINTING MIRRORS-J

Figure 7. Copper vapor laser, collimator, and pointing mirrors. For
this experiment only, information from mainly one of the two
beams was used. The collimator permitted a more efficient
use of the laser energy. The pointing mirror allowed an
adequate illumination of the sample volume.
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To FROM LEADING EDGE1 OF LASER OUTPUT PULSE

2 -11111 RANGE DELAY .5 MICRO SEC.

3 - - SAMPLE GATE 27 NANO sec.

4 DATA FLAG

5 HOLD PERIOD u,[ ]
100 MICRO SEC

6 RECYCLE nl

0 TIME

Figure 8. A time depiction of the gate circuit operation.

The backscatter signal, electronic, produced by the photomultiplier, was
processed by this circuit. Step 1 was an electronic pulse produced by a
light-sensitive diode in the laser. Step 2 was the time delay from laser
pulse production to the area at the scattering volume, 0.5 microsecond.
Step 3, a fast switch turned on passing 27 nanoseconds of the signal from
the photomultiplier. Step 4 was a reference pulse to trigger the A - D
converter. In step 5, the signal was held for recording by an analog
recorder for later processing.
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It was determined that the short-time variation of the laser output E was
less than 5 percent. Therefore, E can be considered constant over the 2-
to 3-minute time period of the experiment.

The efficiency Z includes the mirror surface efficiencies of the primary
and secondary telescope mirrors, the transmission efficiencies of the
optical filter, the gain of the photomultiplier tube, and the efficiency
of the gate circuit system, values for which are given in the definition
of symbols. The linearity and reproducibility of the photomultiplier
tube, its biasing network, and the gate were measured by putting three
different intensity values of pulsed light into the tube and monitoring
the gate voltage. There was less than I percent variation from linearity
and of reproducibility. With this measurement, Z can be considered a
constant.

Taking E as a constant,

B = S , (7)

where S is the signal that reaches the receiver telescope. The actual
recorded voltage will be equal to the signal S divided by the efficiency
factor Z; that is, S = ZV1. It then follows from equation (7) that

B180 = ZV1  (11)

Using equations (3) and (11),

M(+) Vl. (12)

The portion in parentheses is constant only if the size distribution
f(r) is constant. VI is the recorded voltage from the gate circuit.

In figures 1 through 4, there is a relative scale B, based on equation
(12), linear and proportional to the backscattered return. The data
average for both average M and average B180 for this total time period

of 2 minutes is placed at the value 1 on the scale. An average mass
loading value based on a mass measurement over the same 2-minute time
period must be known to relate mass loading units to the relative dust
backscatter scale B. There are several available methods to estimate
an average mass loading value in the atmosphere, but these are for much
longer time periods.

23



Table 1 shows the contribution of particles of various sizes to the back-
scatter and mass loading (Knollenberg counter data21 ). The Knollenberg
counter is an electronic device which utilizes light scatter to measure
and count particles. The effect of different values of k (the imaginary
index of refraction) on the backscatter cross section is also illustrated
in this table. A value can be obtained from the data giving an average
mass loading of 34.5 micrograms per cubic meter over a 10-minute time
period, but this value is statistically weak.

Hinds and Gillespie* have measured mass loading values by drawing a known
volume of air through a millipore filter over a 2-week period and weigh-
ing the resultant material on the filter. Their values taken about 5
kilometers west of the lidar site during the period July 1975 to July
1976 are presented in table 2.

An average mass loading value can also be estimated, knowing a value for
the horizontal visibility 22 at the time the lidar data were taken; during
this time the horizontal visibility was approximately 130 kilometers.

The following equation (from reference 22) relates the horizontal visi-
bility V to the mass loading M and gives an estimate of the average mass
loading:

M = 1.8 x l03  (13)V

From this equation, there are estimated deviations of +50 percent.

The value from table 2, the first set of data for rather clear air in the
fall, would be about 21 micrograms per cubic meter. In method 3, the
value obtained by using the horizontal visibility was 14 micrograms per
cubic meter. From table 1, a mass loading can be obtained from this counter
data, taken only 3 days after the backscattering data in similar meteoro-
logical conditions. This value is 34.5 micrograms per cubic meter. The
wide disagreement in these values indicates that further work must be done
to determine the cause of the discrepancies. It then may be possible to
accurately relate B180 to M. Since this is not now possible, it is nec-

essary to deal with relative mass loadings rather than absolute ones.

21R. G. Pinnick and H. J. Auvermann, 1979, "Response Characteristics of
Knollenberg Light-Scattering Aerosol Counters," J Aerosol Sci, 10:55-74

*B. D. Hinds and J. B. Gillespie, Feb 1979, personal communication, unpub-
lished data, Atmospheric Sciences Laboratory, US Army Electronics Research
and Development Command, White Sands Missile Range, NM

22Robert J. Charlson, N. C. Ahlquist, H. Selvidge, and P. B. Macready, Jr.,
1969, "Monitoring of Atmospheric Aerosol Parameters with the IntegratingNephelometer," J Air Poll Control Assoc, 19:937-942
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TABLE 1. KNOLLENBERG DUST COUNTER ATA

Mass per 1 18 0 m- IsR-
1  

n = 1.5
Channel Channel Channel

Channel Channel Center Width
Number Count 0 un) (0rn) (Gg m ) K = 0 K = 0.05 Kt - 0.1

1 214 1.93 0.157 0.04 0.65 6.9 9.0 2.8

2 96 2.43 0.198 0.04 0.54 2.7 18.0 14.4

3 24 2.95 0.24 0.04 0.24 10.8 3.8 1.0

4 17 3.52 0.286 0.055 0.31 30.1 7.6 2.5

5 16 3.57 0.29 0.O8 1.65 7.6 1.2 0.24

6 12 5.03 0.41 0.17 0.34 45.0 9.2 2.8

7 4 9.85 0.8 0.6 0.97 13.0 5.1 1.0

8 3 19.7 1.6 1.0 5.53 ......

9 1 44.0 3.6 3.1 2fl.34 ......

The dust particle counter data from table 1 were taken at the same position as the scattering volumes, with the exception of 2 meters

displacement horizontally. The data were taken 7 December 1977 at :00 p.m. Five ?-minute segments of data were averaged to produce this

set. Data for channels 1 through 4 were from measurements made with a Knollenberg Model Mo. ASASP-300. Data for channels 5 to 9 were

produced from measurements made by a Knollenberg Model CSAP-l00. The count number is the number of particles the counter saw in that

radius range. X = 2-r/h, the size parameter. Channel center represents the average particle radius. Channel width is the dimension from
the smallest to the largest particle counted in that cannel. Mass per channel is the mass loading for all the particles in that size
range.

Nb rrFTs r3

r 

1 r-

B 1 8 0 = _ I G n r ' d r

P is the average density of the dust particles.

C is the number of particles counted in that size range.

8180 is the total backscatter cross section all the particles in that size range.

G is the backscatter gain averaged over that channel.

r2 is the larger limit in the channel.

r1 Is the small limit In the channel.

T. is the sampling time, and F is the flow rate.

The three columns on the right represent different values of G obtained from a standard light scattering table
23 

for specific values of n
and k. This table lists values only to X 

= 
15. Therefore, there are no values for the last two entries in these columns.

Statistically, this counting period Ts is too short in this clear air condition. In channel q, it would be better to extend Tw where C
becomes approximately 100.

'N. C. Wic~ramaslnghe, 1973, Light Scattering Functions for Small Particles with Applications in Astronomy, John Wiley and Sons, NY

t
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TABLE 2. AVERAGE MASS LOADING MEASUREMUNTS

'lass Loading

Date Taken (pg n-3)

1-15 July 1975 12

15-29 July 1975 11

29 July - 1 August 1975 11

11-25 August 1975 8

25 August - 8 September 1975 8

9-22 September 1975 .3

22 September - 7 October 1975 19

7-22 October 1975 19

22 October - 3 November 1975 18

3-17 November 1975 24

17 November - 1 December 1975 27

1-15 December 1975 25

15-29 December 1975 --

29 December 1975 - 14 January 1976 14

14-26 January 1976 16

26 January - 9 February 1976 1

11-23 February 1976 16

23 February - 8 March 1976 5l

9-22 March 1976 53

22 March - 6 April 1976 41

6-19 April 1976 45

19 April - 3 May 1976 30

3-17 May 1976 28

17 May - 1 June 1976 17

1-14 June 1976 24

14-28 June 1976 34

Mr. B. D. Hinds and J. Gillespie obtained and furnished these data from
a site about 5 kilometers west of the lidar site. The sampler was on a
tower 3.5 meters above the ground. Air was drawn through 47-millimeter
plastic filters at a known rate, and the mass of the dust was obtained by
weighing the filter. W1ith this information, mass loading can be obtained.
It must be remembered that this is an average over a 2-week period.
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The 0 in the relative dust backscatter scale (figures 1 through 4) has
been corrected for Rayleigh scatter, from gas molecules, and residual
gate voltage. The Rayleigh scatter, from the literature,24 is estimated
to be 10 percent or less of the average backscatter. The value taken was
10 percent. The effect of this correction tends to compress the relative
dust backscatter scale, which makes the relative backscatter changes
occur over a larger relative mass range.

In a fast gate circuit as used here, there is a small but constant volt-
age on the gate, even when the input leads are shorted. This constant
value is about 8 percent of the average signal during this time. The 0
was adjusted to eliminate both the estimated Rayleigh scattering signal
and the gate residual voltage. The average value relates to the number 1
on the relative scale B. These corrections appear quite reasonable for
the data obtained, since the lowest relative mass loading observed was
still slightly above 0 after these corrections were applied (see figure 1).

Three comparisons were made to check the reliability of the data. As
shown in figure 7, the laser beam was split into two beams. Each of
these beams irradiated separate volumes in the atmosphere 24 centimeters
apart at an identical range from the transmitter. A separate photomulti-
plier tube measured the light from each of these volumes. A separate
group of electronics processed the signals, and the signals were recorded
on separate channels in the tape recorder. During the computer processing,
the two signals (figures 2 and 9) were cross-correlated (figure 10). At
a maximum of the cross-correlation, a value of 0.85 or more was obtained;
the cross-correlation maximum did not fall at zero time delay. This is
important because if the cross-correlation maximum fell at zero time delay,
it would indicate that these variations were caused by variations in the
laser output. Rather, the time delay is an indication of the time of
flight of the dust minicloud from one scattering volume to the other.
The reason for the lag time was that the dust irregularities were being
carried along by the wind; the wind took a certain period of time to
carry these dust clouds through a distance of 24 centimeters, which was
the beam separation.

Also, in the wind records taken simultaneously with this backscatter
data, a change in the wind velocity can generally be seen to correlate
with the edges of these dust clouds (figure 11). Weinman* proposed that
there should be wind shear at the surface of these dust miniclouds.

21R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S.
Garing, 1971, "Optical Properties of the Atmosphere (Revised)," AD 726116,
AFCRL-71-0279, Environmental Research Papers, Air Force Cambridge Research
Laboratories, L. C. Hanscom Field, Bedford, MA

*J. Weinman, personal communications, March 1978, Department of
Meteorology, University of Wisconsin, Madison, WI
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Figure 9. The raw backscattering data from the second scattering volume.

The raw signal from the first scattering volume is shown in figure 2.
These data were taken simultaneously with the data in figure 2 and were
cross-correlated with the data in figure 2 to obtain the correlation curve
in figure 10. The difference between the two curves arises in the high
frequency components in the data. The frequency components 5 hertz and
higher are felt to be unrelated to the backscatter from the dust. Part
of this discrepancy arises in that this channel, laser beam, and receiver
were not quite as well aligned as the other channel. Also, during pro-
cessing, the computer scaled these data about 25 percent smaller in
amplitude.
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Figure 10. A cross-correlation of the data in figure 9 with the data in
figure 2.

Results were obtained by placing a high frequency filter in the data with

a cos 2roll-off. The 0.707 point in this filter was set at 1 hertz.
The remain ing signal was cross-correlated. The correlation maximum was
0.87 at a time lag of 0.1 second.
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BACKSCATTER
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TIME SECONDS
Figure 11. Three of the dust clouds that appear in the mass loading data are

pointed out in the wind record (numbers 3, 5, and 6).

This wind record was taken simultaneously with the backscatter data having the
instrument offset horizontally 2 meters from the scattering volume. Curve A is
the wind record covering from 6 to 14 meters per second and the horizontal com-
ponent of the wind perpendicular to the laser beam. Curve B is the backscatter
data over the same period of time. This figure illustrates the wind shear at
the edge of the dust miniclouds.
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TABLE 3. MAXIMUM MASS LOADING OF DUST CLOUDS AND THEIR HORIZONTAL DIIVENSICNS

Sample Horizontal Dimension Mass Loading
Number (m) big 3

1 58 24

2 38 23

3 44 37

4 24 32

5 56 3)

6 02 33

7 50 27

8 40 34

9 31 10

10 72 37

12 38 37

13 85 37

The more significant dust clouds are illustrated in figures 1 through 4 and
are listed here by number. The horizontal dimension of each cloud was ob-
tained by measuring the time the cloud was in the scattering volume, averag-
ing the wind at this time with an anemometer, and hence deriving the size.
The mass maxima were taken from the figures. The approximation made to ob-
tain these mass maxima consists of the assumption that a ?-week average
taken in the fall (21 micrograms per cubic meter) for mass loading (see
table 2) is the same as a 2-minute average for mass loading.
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Figure 12. Backscatter data from the two lidar scattering volumes.

Two hundred points of the original data were sumed and divided by 200. This
was taken as one point on the graph, therefore eliminating all frequencies greater
than 15 hertz. Note that, in general, the shapes of these two curves are similar.
The approximate variation in amplitude of 3 is caused by: (1) a scaling factor
difference of approximately 25 percent when the computer produced these two curves,
(2) a slight problem of misalignment between the receiver telescope and the laser
beam, and (3) a small difference in the energies between the two projected laser
beams.
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The results obtained here show that dust in the natural atmosphere was
not perfectly mixed with the gaseous medium. Dust occurred in clouds or
irregularities. In this set of data, the relative mass variation changed
over a factor of approximately eight. The more predominant dust clouds
are designated by numbers on figures 1 through 4 and are listed in table
3. Their estimated mass loading maximum is given with their horizontal
size.

In figure 12, 2 minutes of backscattered data are presented from both of
the volumes. It is evident that the general shape of both traces is
similar, but possible malalignment of this transmitter beam with the
atmospheric volume which the telescope was receiving is considered.

CONCLUSIONS

For the experiment reported here, the dust in the atmosphere did not form
an ideal mixture with the gaseous components. For the period of time con-
sidered here, mass loading cells can be observed in the data.

A mathematical treatment is presented here relating the backscatter coef-
ficient to the mass loading. With constant illumination (from the laser),
the backscattered signal is proportional to the backscatter coefficient.

In the data presented, the clearly defined mass loading cells are pointed
out as to their size and estimated mass loading maxima and are then
numbered. There is an approximate factor of 8 variation in relative mass
loading.

These results should be of value to studies of the atmosphere as relates
to chemical reaction and energy balance where a better understanding of
actual dust distribution is important.

FUTURE RESEARCH

The problem of the high frequency components in the backscattered signal
should be investigated to verify if they are caL~ed by optical turbulence
in the atmosphere.

Another area of interest for future research will be to look at the back-
scatter from individual minerals in the dust by utilizing ordinary Raman
scatter techniques.

Some of the uncertainty in this data analysis could be eliminated by
taking backscatter data and Knollenberg counter data simultaneously.
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DEFINITION OF SYMBOLS

X Size parameter in light-scattering theory. X = 2irr

The wavelength of light under consideration. In this experi-
ment, the Cu vapor laser was producing two wavelengths, but
only one wavelength, 5106 angstroms, was used.

r The geometric radius of the particle that is causing the
light scattering.

m The index of refraction of the particle doing the scattering.

m = n - ik.

n The real portion of the index of refraction.

k The imaginary part of the index of refraction. A - 4irk

where A is the Lambert Beer law absorption coefficient, for
particles having a diameter less than the wavelength.

G The backscatter gain for a specific particle. G is a func-
tion of m and X.

B180  The effective backscattering cross section of all the particles
that are being irradiated, in the scattering volume of interest.
Ideally, this is the scatter parallel to the laser beam, back
along it.

P The density of the dust; this is, the density of the solid
material. It is a weighted average for the minerals of which
the dust is composed.

M The total mass of dust in a specific volume of air, usually
-3

in pg m

r2  The largest dust particle expected for the particular con-
dition of interest. In the case used here, there is no
specific limit to the maximum size.

r I  Smallest particle radius encountered. Because of agglomera-
tion of extremely fine particles, the minimum n is about
0.01 micron.

E The energy output at the front of the laser in the wavelength
range 5106 angstroms.

S The total scattered signal available at the front of the
receiver telescope that will enter the telescope.
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V The horizontal visibility as measured by the human eye.
Different objects are observed horizontally. The most
distant one that can be seen is noted as to its distance
from the observer.

Vl  The voltage passed from the photomultiplier to the sample
and hold network. The tape recorder receives the voltage
from the sample and hold network. This is an average voltage
signal during the gate period from the photomultiplier.

Z The efficiency of the receiver telescope. The primary and
secondary mirrors have a reflectivity of about 0.9. The
optical filter has a transmission of 0.6 at 5106 angstroms.
The phototube has a quantum efficiency of 30 percent at
5106 angstroms.

f(r) The differential size distribution of the dust of interest.
This type of size distribution will give the fraction of
dust having a size r. When integrated from r2 and rl , the
result is 1.

L The range from the lidar to the scattering volumes. This is
produced by the laser putting out a pulse and the gate circuit
delaying the gate to open until the pulse has traveled L, the
range.

The atmospheric extinction, this is absorption and scatter,
from the total material in the atmosphere.

A The Lambert-Beer's law coefficient absorption of light at the
wavelength.

T The transmission, which is the fraction of unaffected light
traveling through a specific length of the atmosphere. The
light can be removed either by scattering or absorption.
Ideally, this value will be I in a vacuum path.

T s  The sample time in seconds that the dust counter recorded the
number of particles, C. In table 1, the period was 120 seconds.

rc The average size radius of the dust particles counted in that
channel of the dust counter. In the example presented, table 1,
this number is listed in column 4.

C The number of particles seen and counted by the dust particle
counter over a range Ar, centered at a size radius of rc over

the time period Ts . These numbers appear in table 1, column 2.
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Ar The range of sizes of particles that the dust counter will see
and count in one channel. Numbers are listed in table 1,
column 5.

F The flow rate of air and dust through the light scattering
chamber. A small fan draws the air through this sampling
cavity.

N The total number of dust particles of all sizes in the
0 scattering volume.
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